了解模型预测在医疗保健方面至关重要,以促进模型正确性的快速验证,并防止利用利用混淆变量的模型。我们介绍了体积医学图像中可解释的多种异常分类的挑战新任务,其中模型必须指示用于预测每个异常的区域。为了解决这项任务,我们提出了一个多实例学习卷积神经网络,AxialNet,允许识别每个异常的顶部切片。接下来我们将赫雷库姆纳入注意机制,识别子切片区域。我们证明,对于Axialnet,Hirescam的说明得到保证,以反映所用模型的位置,与Grad-Cam不同,有时突出不相关的位置。使用一种产生忠实解释的模型,我们旨在通过一种新颖的面具损失来改善模型的学习,利用赫克斯克姆和3D允许的区域来鼓励模型仅预测基于器官的异常,其中出现的异常。 3D允许的区域通过新方法,分区自动获得,其组合从放射学报告中提取的位置信息与通过形态图像处理获得的器官分割图。总体而言,我们提出了第一种模型,用于解释容量医学图像中的可解释的多异常预测,然后使用掩模损耗来实现36,316扫描的Rad-Chessct数据集中多个异常的器官定位提高33%,代表状态本领域。这项工作推进了胸部CT卷中多种异常模型的临床适用性。
translated by 谷歌翻译
解释方法有助于开发学习有意义的概念的模型,并避免利用杂散相关性。我们说明了对流行神经网络的先前未被识别的限制解释方法GRAC-CAM:作为梯度平均步骤的副作用,Grad-Cam有时突出显示模型实际使用的位置。为了解决这个问题,我们提出了一种新颖的类特定的解释方法,保证只能突出显示用于制作每个预测的模型的位置。我们证明了亨克斯姆是凸轮的泛化,探索赫什罕与基于梯度的解释方法之间的关系。 Pascal VOC 2012的实验,包括人群源评级,阐述了虽然亨克斯姆的解释忠实地反映了该模型,但Grad-Cam往往会扩大注意力创造更大和更平滑的可视化。总体而言,这项工作进展了卷积神经网络的解释方法,可以帮助开发敏感应用的可靠性模型。
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
In recent years, reinforcement learning (RL) has become increasingly successful in its application to science and the process of scientific discovery in general. However, while RL algorithms learn to solve increasingly complex problems, interpreting the solutions they provide becomes ever more challenging. In this work, we gain insights into an RL agent's learned behavior through a post-hoc analysis based on sequence mining and clustering. Specifically, frequent and compact subroutines, used by the agent to solve a given task, are distilled as gadgets and then grouped by various metrics. This process of gadget discovery develops in three stages: First, we use an RL agent to generate data, then, we employ a mining algorithm to extract gadgets and finally, the obtained gadgets are grouped by a density-based clustering algorithm. We demonstrate our method by applying it to two quantum-inspired RL environments. First, we consider simulated quantum optics experiments for the design of high-dimensional multipartite entangled states where the algorithm finds gadgets that correspond to modern interferometer setups. Second, we consider a circuit-based quantum computing environment where the algorithm discovers various gadgets for quantum information processing, such as quantum teleportation. This approach for analyzing the policy of a learned agent is agent and environment agnostic and can yield interesting insights into any agent's policy.
translated by 谷歌翻译
One of the major challenges of machine translation (MT) is ambiguity, which can in some cases be resolved by accompanying context such as an image. However, recent work in multimodal MT (MMT) has shown that obtaining improvements from images is challenging, limited not only by the difficulty of building effective cross-modal representations but also by the lack of specific evaluation and training data. We present a new MMT approach based on a strong text-only MT model, which uses neural adapters and a novel guided self-attention mechanism and which is jointly trained on both visual masking and MMT. We also release CoMMuTE, a Contrastive Multilingual Multimodal Translation Evaluation dataset, composed of ambiguous sentences and their possible translations, accompanied by disambiguating images corresponding to each translation. Our approach obtains competitive results over strong text-only models on standard English-to-French benchmarks and outperforms these baselines and state-of-the-art MMT systems with a large margin on our contrastive test set.
translated by 谷歌翻译
Legal contracts, such as employment or lease agreements, are important documents as they govern the obligations and entitlements of the various contracting parties. However, these documents are typically long and written in legalese resulting in lots of manual hours spent in understanding them. In this paper, we address the task of summarizing legal contracts for each of the contracting parties, to enable faster reviewing and improved understanding of them. Specifically, we collect a dataset consisting of pairwise importance comparison annotations by legal experts for ~293K sentence pairs from lease agreements. We propose a novel extractive summarization system to automatically produce a summary consisting of the most important obligations, entitlements, and prohibitions in a contract. It consists of two modules: (1) a content categorize to identify sentences containing each of the categories (i.e., obligation, entitlement, and prohibition) for a party, and (2) an importance ranker to compare the importance among sentences of each category for a party to obtain a ranked list. The final summary is produced by selecting the most important sentences of a category for each of the parties. We demonstrate the effectiveness of our proposed system by comparing it against several text ranking baselines via automatic and human evaluation.
translated by 谷歌翻译
The UK COVID-19 Vocal Audio Dataset is designed for the training and evaluation of machine learning models that classify SARS-CoV-2 infection status or associated respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary participants through the national Test and Trace programme and the REACT-1 survey in England from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2 variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations, and speech were collected in the 'Speak up to help beat coronavirus' digital survey alongside demographic, self-reported symptom and respiratory condition data, and linked to SARS-CoV-2 test results. The UK COVID-19 Vocal Audio Dataset represents the largest collection of SARS-CoV-2 PCR-referenced audio recordings to date. PCR results were linked to 70,794 of 72,999 participants and 24,155 of 25,776 positive cases. Respiratory symptoms were reported by 45.62% of participants. This dataset has additional potential uses for bioacoustics research, with 11.30% participants reporting asthma, and 27.20% with linked influenza PCR test results.
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译
Generating realistic 3D worlds occupied by moving humans has many applications in games, architecture, and synthetic data creation. But generating such scenes is expensive and labor intensive. Recent work generates human poses and motions given a 3D scene. Here, we take the opposite approach and generate 3D indoor scenes given 3D human motion. Such motions can come from archival motion capture or from IMU sensors worn on the body, effectively turning human movement in a "scanner" of the 3D world. Intuitively, human movement indicates the free-space in a room and human contact indicates surfaces or objects that support activities such as sitting, lying or touching. We propose MIME (Mining Interaction and Movement to infer 3D Environments), which is a generative model of indoor scenes that produces furniture layouts that are consistent with the human movement. MIME uses an auto-regressive transformer architecture that takes the already generated objects in the scene as well as the human motion as input, and outputs the next plausible object. To train MIME, we build a dataset by populating the 3D FRONT scene dataset with 3D humans. Our experiments show that MIME produces more diverse and plausible 3D scenes than a recent generative scene method that does not know about human movement. Code and data will be available for research at https://mime.is.tue.mpg.de.
translated by 谷歌翻译